Lesson 5: Negative Rational Exponents

• Let's investigate negative exponents.

5.1: Math Talk: Don't Be Negative

Evaluate mentally.

 9^2 9^{-2} $9^{\frac{1}{2}}$ $9^{-\frac{1}{2}}$

5.2: Negative Fractional Powers Are Just Numbers

1. Complete the table as much as you can without using a calculator. (You should be able to fill in three spaces.)

X	-2	$-\frac{5}{3}$	$-\frac{4}{3}$	-1	$-\frac{2}{3}$	$-\frac{1}{3}$	0
2^x (using exponents)	2-2	$2^{-\frac{5}{3}}$	$2^{-\frac{4}{3}}$	2-1	$2^{-\frac{2}{3}}$	$2^{-\frac{1}{3}}$	2^{0}
2^x (decimal approximation)							

a. Plot these powers of 2 УI in the coordinate plane. b. Connect the points as 0.8 smoothly as you can. c. Use your graph of 0.6 $y = 2^x$ to estimate the value of the other 0.4 powers in the table, and write your estimates in the table. 0.2 X \mathcal{O} $-\frac{4}{3}$ $-\frac{2}{3}$ -2 -1 <u>-</u>5 $-\frac{1}{3}$

- 2. Let's investigate $2^{-\frac{1}{3}}$.
 - a. Write $2^{\frac{1}{3}}$ using radical notation.

b. What is the value of
$$\left(2^{-\frac{1}{3}}\right)^3$$
?

- c. Raise your estimate of $2^{-\frac{1}{3}}$ to the third power. What should it be? How close did you get?
- 3. Let's investigate $2^{-\frac{2}{3}}$.
 - a. Write $2^{-\frac{2}{3}}$ using radical notation.
 - b. What is $\left(2^{-\frac{2}{3}}\right)^3$?
 - c. Raise your estimate of $2^{-\frac{2}{3}}$ to the third power. What should it be? How close did you get?

5.3: Any Fraction Can Be an Exponent

1. For each set of 3 numbers, cross out the expression that is not equal to the other two expressions.

a.
$$8^{\frac{4}{5}}$$
, $\sqrt[4]{8^5}$, $\sqrt[5]{8^4}$
b. $8^{-\frac{4}{5}}$, $\frac{1}{\sqrt[5]{8^4}}$, $-\frac{1}{\sqrt[5]{8^4}}$
c. $\sqrt{4^3}$, $4^{\frac{3}{2}}$, $4^{\frac{2}{3}}$
d. $\frac{1}{\sqrt{4^3}}$, $-4^{\frac{3}{2}}$, $4^{-\frac{3}{2}}$

2. For each expression, write an equivalent expression using radicals.

a.
$$17^{\frac{3}{2}}$$

b. $31^{-\frac{3}{2}}$

3. For each expression, write an equivalent expression using only exponents.

a.
$$\left(\sqrt{3}\right)^4$$

b. $\frac{1}{\left(\sqrt[3]{5}\right)^6}$

Are you ready for more?

Write two different expressions that involve only roots and powers of 2 which are equivalent to $\frac{4^{\frac{2}{3}}}{8^{\frac{1}{4}}}$.

5.4: Make These Exponents Less Complicated

Match expressions into groups according to whether they are equal. Be prepared to explain your reasoning.

Lesson 5 Summary

When we have a number with a negative exponent, it just means we need to find the reciprocal of the number with the exponent that has the same magnitude, but is positive. Here are two examples:

$$7^{-5} = \frac{1}{7^5}$$
$$7^{-\frac{6}{5}} = \frac{1}{7^{\frac{6}{5}}}$$

The table shows a few more examples of exponents that are fractions and their radical equivalents.

x	-1	$-\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{2}{3}$	1
5^x (using exponents)	5-1	$5^{-\frac{2}{3}}$	$5^{-\frac{1}{3}}$	5 ⁰	$5^{\frac{1}{3}}$	$5^{\frac{2}{3}}$	5 ¹
5^x (equivalent expressions)	$\frac{1}{5}$	$\frac{1}{\sqrt[3]{5^2}} \text{ or } \frac{1}{\sqrt[3]{25}}$	$\frac{1}{\sqrt[3]{5}}$	1	$\sqrt[3]{5}$	$\sqrt[3]{5^2}$ or $\sqrt[3]{25}$	5

Lesson 5 Practice Problems

1. Write each expression in the form a^b , without using any radicals.

a.
$$\sqrt{5^9}$$

b. $\frac{1}{\sqrt[3]{12}}$

- 2. Write $32^{-\frac{2}{5}}$ without using exponents or radicals.
- 3. Match the equivalent expressions.

A. $8^{\frac{1}{3}}$	1. $\frac{1}{8}$
B. $8^{-\frac{1}{3}}$	2. $\frac{1}{4}$
C. 8 ⁻¹	3. $\frac{1}{2}$
D. $16^{\frac{1}{2}}$	4. 1
E. $16^{-\frac{1}{2}}$	5.2
F. 16 ⁰	6.4

4. Complete the table. Use powers of 27 in the top row and radicals or rational numbers in the bottom row.

27^{1}		$27^{\frac{1}{3}}$		$27^{-\frac{1}{2}}$	
27	$\sqrt{27}$		1		$\frac{1}{3}$

(From Unit 3, Lesson 3.)

5. What are the solutions to the equation (x - 1)(x + 2) = -2?

(From Unit 2, Lesson 11.)

6. Use exponent rules to explain why $(\sqrt{5})^3 = \sqrt{5^3}$.

(From Unit 3, Lesson 4.)

Lesson 6: Squares and Square Roots

• Let's compare equations with squares and square roots.

6.1: Math Talk: Four Squares

Find the solutions of each equation mentally.

- $x^2 = 4$
- $x^2 = 2$
- $x^2 = 0$
- $x^2 = -1$

6.2: Finding Square Roots

Clare was adding $\sqrt{4}$ and $\sqrt{9}$, and at first she wrote $\sqrt{4} + \sqrt{9} = 2 + 3$. But then she remembered that 2 and -2 both square to make 4, and that 3 and -3 both square to make 9. She wrote down all the possible combinations:

2 + 3 = 5 2 + (-3) = -1 (-2) + 3 = 1 (-2) + (-3) = -5

Then she wondered, "Which of these are the same as $\sqrt{4} + \sqrt{9}$? All of them? Or only some? Or just one?"

How would you answer Clare's question? Give reasons that support your answer.

Are you ready for more?

- 1. How many solutions are there to each equation?
 - a. $x^3 = 8$ b. $y^3 = -1$ c. $z^4 = 16$ d. $w^4 = -81$
- 2. Write a rule to determine how many solutions there are to the equation $x^n = m$ where *n* and *m* are non-zero integers.

6.3: One Solution or Two?

1. The graph of $b = \sqrt{a}$ is shown.

a. Complete the table with the exact values and label the corresponding points on the graph with the exact values.

a	1	4	9	12	16	20
\sqrt{a}						

- b. Label the point on the graph that shows the solution to $\sqrt{a} = 4$.
- c. Label the point on the graph that shows the solution to $\sqrt{a} = 5$.
- d. Label the point on the graph that shows the solution to $\sqrt{a} = \sqrt{5}$.

- 2. The graph of $t = s^2$ is shown.
 - a. Label the point(s) on the graph that show(s) the solution(s) to $s^2 = 25$.
 - b. Label the point(s) on the graph that show(s) the solution(s) to $\sqrt{t} = 5$.
 - c. Label the point(s) on the graph that show(s) the solution(s) to $s^2 = 5$.

Lesson 6 Summary

The symbol $\sqrt{11}$ represents the *positive* square root of 11. If we want to represent the negative square root, we write $-\sqrt{11}$.

The equation $x^2 = 11$ has two solutions, because $\sqrt{11}^2 = 11$, and $\operatorname{also}(-\sqrt{11})^2 = 11$.

The equation $\sqrt{x} = 11$ only has one solution, namely 121.

The equation $\sqrt{x} = \sqrt{11}$ only has one solution, namely 11.

The equation $\sqrt{x} = -11$ doesn't have any solutions, because the left side is positive and the right side is negative, which is impossible, because a positive number cannot equal a negative number.

Lesson 6 Practice Problems

1. Select **all** solutions to the equation $x^2 = 7$.

2. Find the solution(s) to each equation, if there are any.

a.
$$x^2 = 9$$

b.
$$\sqrt{x} = 3$$

c.
$$\sqrt{x} = -3$$

3. a. If *c* is a positive number, how many solutions does $x^2 = c$ have? Explain.

b. If *c* is a positive number, how many solutions does $\sqrt{x} = c$ have? Explain.

- 4. Suppose that a friend missed class and never learned what $37^{\frac{1}{3}}$ means.
 - a. Use exponent rules your friend would already know to calculate $(37^{\frac{1}{3}})^3$.

b. Explain why this means that $37^{\frac{1}{3}}$ is the cube root of 37.

```
(From Unit 3, Lesson 3.)
```

- 5. Evaluate $8^{\frac{5}{3}}$.
- 6. Write each expression without using exponents.

a.
$$5^{\frac{2}{3}}$$

b. $4^{-\frac{3}{2}}$

(From Unit 3, Lesson 5.)