Lesson 1: Properties of Exponents

• Let's use integer exponents.

1.1: Which One Doesn't Belong: Exponents and Equations

- A. $2^3 = 9$
- B. $9 = 3^2$
- C. $2 \cdot 2 \cdot 2 \cdot 2 = 16$

D. $a \cdot 2^0 = a$

1.2: Name That Power

Find the value of each variable that makes the equation true. Be prepared to explain your reasoning.

1. $2^{3} \cdot 2^{5} = 2^{a}$ 2. $3^{b} \cdot 3^{7} = 3^{11}$ 3. $\frac{4^{3}}{4^{2}} = 4^{c}$ 4. $\frac{5^{8}}{5^{d}} = 5^{2}$ 5. $6^{m} \cdot 6^{m} \cdot 6^{m} = 6^{21}$ 6. $(7^{n})^{4} = 7^{20}$ 7. $2^{4} \cdot 3^{4} = 6^{s}$ 8. $5^{3} \cdot t^{3} = 50^{3}$

1.3: The Power of Zero

1. Use exponent rules to write each expression as a single power of 2. Find the value of the expression. Record these in the table. The first row is done for you.

expression	power of 2	value
$\frac{2^5}{2^1}$	2^4	16
$\frac{2^5}{2^2}$		
$\frac{2^5}{2^3}$		
$\frac{2^5}{2^4}$		
$\frac{2^5}{2^5}$		
$\frac{2^5}{2^6}$		
$\frac{2^5}{2^7}$		

- 2. What is the value of 5^0 ?
- 3. What is the value of 3^{-1} ?
- 4. What is the value of 7^{-3} ?

Are you ready for more?

Explain why the argument used to assign a value to the expression 2^0 does not apply to make sense of the expression 0^0 .

1.4: Matching Exponent Expressions

Sort expressions that are equal into groups. Some expressions may not have a match, and some may have more than one match. Be prepared to explain your reasoning.

$$2^{-4} \qquad \frac{1}{2^4} \qquad -2^4 \qquad -\frac{1}{2^4} \qquad 4^2 \qquad 4^{-2} \qquad -4^2 \qquad -4^{-2}$$
$$2^7 \cdot 2^{-3} \qquad \frac{2^7}{2^{-3}} \qquad 2^{-7} \cdot 2^3 \qquad \frac{2^{-7}}{2^{-3}} \qquad (-4)^2$$

Lesson 1 Summary

Exponent rules help us keep track of a base's repeated factors. Negative exponents help us keep track of repeated factors that are the *reciprocal* of the base. We can define a number to the power of 0 to have a value of 1. These rules can be written symbolically as:

$$b^{m} \cdot b^{n} = b^{m+n}$$
$$(b^{m})^{n} = b^{m \cdot n}$$
$$\frac{b^{m}}{b^{n}} = b^{m-n}$$
$$b^{-n} = \frac{1}{b^{n}}$$
$$b^{0} = 1$$
$$a^{n} \cdot b^{n} = (a \cdot b)^{n}$$

Here, the base *b* can be any positive number, and the exponents *n* and *m* can be any integer.

Lesson 1 Practice Problems

1. Find the value of each variable that makes the equation true.

a.
$$2^5 \cdot 2^3 = 2^a$$

b.
$$\frac{7^4}{7^b} = 7^{-2}$$

c.
$$8^c = \frac{1}{64}$$

2. Select **all** the expressions equivalent to $7^{-2} \cdot 7^5 \cdot 7^{-3}$.

A. 0 B. 1 C. $\frac{1}{7}$ D. 7⁰ E. 7¹⁰

3. Which expression is equal to $\frac{3^8}{3^2}$?

A. 1⁶ B. 3⁻⁶ C. 3⁴ D. 3⁶ 4. Find the value of each variable that makes the equation true.

a.
$$\frac{5^6}{5^m} = 5^9$$

b.
$$2^3 \cdot 4^n = 2^{11}$$

c.
$$(7^4)^k = 7^{-8}$$

5. a. Evaluate the expression $\frac{6^3}{6^3}$.

b. Explain how this helps show why $6^0 = 1$.

Lesson 2: Square Roots and Cube Roots

• Let's think about square and cube roots.

2.1: It's a Square

Find the area of square *ABCD*.

2.2: Squares and Their Side Lengths

1. Complete the table with the area of each square in square units, and its exact side length in units.

										\backslash		
										_	\searrow	
				-	\backslash	D		\setminus				
A		/							\backslash			

figure	А	В	С	D	Е
area					
side length					

2. This table includes areas in square units and side lengths in units of some more squares. Complete the table.

area	9		23		89
side length		4		6.4	

Are you ready for more?

In the first question, all of the squares have vertices at grid points.

1. Is there a square whose vertices are at grid points and whose area is 7 square units? Explain how you know.

2. Is there a square whose vertices are at grid points and whose area is 10 square units? Explain how you know.

2.3: Cube It

- 1. A cube has edge length 3 units. What is the volume of the cube?
- 2. A cube has edge length 4 units. What is the volume of the cube?
- 3. A cube has volume 8 units. What is the edge length of the cube?
- 4. A cube has volume 7 units. What is the edge length of the cube?

5. $\sqrt[3]{1,200}$ is between 10 and 11 because $10^3 = 1,000$ and $11^3 = 1,331$. Determine the whole numbers that each of these cube roots lies between:

 $\sqrt[3]{500}$

 $\sqrt[3]{100}$

 $\sqrt[3]{50}$

 $\sqrt[3]{10}$

between	1 and	2 and	3 and	4 and	5 and	6 and	7 and	8 and
	2	3	4	5	6	7	8	9

Lesson 2 Summary

 $\sqrt[3]{5}$

If a square has side length s, then the area is s^2 . If a square has area A, then the side length is \sqrt{A} . For a positive number b, the square root of b is defined as the positive number that squares to make b, and it is written as \sqrt{b} . In other words, $(\sqrt{b})^2 = b$. We can also think of \sqrt{b} as a solution to the equation $x^2 = b$. This square has an area of b because its sides have length \sqrt{b} :

Similarly, if a cube has edge length s, then the volume is s^3 . If a cube has volume V, then the edge length is $\sqrt[3]{V}$. The number $\sqrt[3]{a}$ is defined as the number that cubes to make a. In other words, $(\sqrt[3]{a})^3 = a$. We can also think of $\sqrt[3]{a}$ as a solution to the equation $x^3 = a$. This cube has a volume of a because its sides have length $\sqrt[3]{a}$:

Lesson 2 Practice Problems

1. Rewrite the following expression as a number with no exponents. Explain or show your reasoning.

$$\frac{7^{-3}}{7^{-5}}$$

(From Unit 3, Lesson 1.)

2. Find the value of each variable that makes the equation true.

a.
$$(2^d)^4 = 2^{12}$$

b.
$$3^5 \cdot 7^5 = e^5$$

c.
$$5^0 \cdot 5^f = 5^4$$

(From Unit 3, Lesson 1.)

- 3. A square has area 9 cm². How long are its sides?
 - A. 3 cm B. 4.5 cm C. 9 cm

D. 81 cm

4. The table shows the side length and area of several different squares. Complete the table using exact values.

side length (cm)	5		$\sqrt{63}$			$\sqrt{125}$
area (cm ²)		49		98	102	

5. Find the two whole numbers that are the closest to $\sqrt{42}$. Explain your reasoning.