## Lesson 1: Properties of Exponents

- Let's use integer exponents.


## 1.1: Which One Doesn't Belong: Exponents and Equations

A. $2^{3}=9$
B. $9=3^{2}$
C. $2 \cdot 2 \cdot 2 \cdot 2=16$
D. $a \cdot 2^{0}=a$

## 1.2: Name That Power

Find the value of each variable that makes the equation true. Be prepared to explain your reasoning.

1. $2^{3} \cdot 2^{5}=2^{a}$
2. $3^{b} \cdot 3^{7}=3^{11}$
3. $\frac{4^{3}}{4^{2}}=4^{c}$
4. $\frac{5^{8}}{5^{d}}=5^{2}$
5. $6^{m} \cdot 6^{m} \cdot 6^{m}=6^{21}$
6. $\left(7^{n}\right)^{4}=7^{20}$
7. $2^{4} \cdot 3^{4}=6^{s}$
8. $5^{3} \cdot t^{3}=50^{3}$

## 1.3: The Power of Zero

1. Use exponent rules to write each expression as a single power of 2 . Find the value of the expression. Record these in the table. The first row is done for you.

| expression | power of 2 | value |
| :---: | :---: | :---: |
| $\frac{2^{5}}{2^{1}}$ | $2^{4}$ | 16 |
| $\frac{2^{5}}{2^{2}}$ |  |  |
| $\frac{2^{5}}{2^{3}}$ |  |  |
| $\frac{2^{5}}{2^{4}}$ |  |  |
| $\frac{2^{5}}{2^{5}}$ |  |  |
| $\frac{2^{5}}{2^{6}}$ |  |  |
| $\frac{2^{5}}{2^{7}}$ |  |  |

2. What is the value of $5^{0}$ ?
3. What is the value of $3^{-1}$ ?
4. What is the value of $7^{-3}$ ?

## Are you ready for more?

Explain why the argument used to assign a value to the expression $2^{0}$ does not apply to make sense of the expression $0^{0}$.

## 1.4: Matching Exponent Expressions

Sort expressions that are equal into groups. Some expressions may not have a match, and some may have more than one match. Be prepared to explain your reasoning.
$2^{-4}$
$\frac{1}{2^{4}}$
$-2^{4}$
$-\frac{1}{2^{4}}$
$4^{2}$
$4^{-2}$
$-4^{2}$
$-4^{-2}$
$2^{7} \cdot 2^{-3} \quad \frac{2^{7}}{2^{-3}} \quad 2^{-7} \cdot 2^{3} \quad \frac{2^{-7}}{2^{-3}}$
$(-4)^{2}$

## Lesson 1 Summary

Exponent rules help us keep track of a base's repeated factors. Negative exponents help us keep track of repeated factors that are the reciprocal of the base. We can define a number to the power of 0 to have a value of 1 . These rules can be written symbolically as:

$$
\begin{aligned}
b^{m} \cdot b^{n} & =b^{m+n} \\
\left(b^{m}\right)^{n} & =b^{m \cdot n} \\
\frac{b^{m}}{b^{n}} & =b^{m-n} \\
b^{-n} & =\frac{1}{b^{n}} \\
b^{0} & =1 \\
a^{n} \cdot b^{n} & =(a \cdot b)^{n}
\end{aligned}
$$

Here, the base $b$ can be any positive number, and the exponents $n$ and $m$ can be any integer.

## Lesson 1 Practice Problems

1. Find the value of each variable that makes the equation true.
a. $2^{5} \cdot 2^{3}=2^{a}$
b. $\frac{7^{4}}{7^{b}}=7^{-2}$
c. $8^{c}=\frac{1}{64}$
2. Select all the expressions equivalent to $7^{-2} \cdot 7^{5} \cdot 7^{-3}$.
A. 0
B. 1
C. $\frac{1}{7}$
D. $7^{0}$
E. $7^{10}$
3. Which expression is equal to $\frac{3^{8}}{3^{2}}$ ?
A. $1^{6}$
B. $3^{-6}$
C. $3^{4}$
D. $3^{6}$
4. Find the value of each variable that makes the equation true.
a. $\frac{5^{6}}{5^{m}}=5^{9}$
b. $2^{3} \cdot 4^{n}=2^{11}$
c. $\left(7^{4}\right)^{k}=7^{-8}$
5. a. Evaluate the expression $\frac{6^{3}}{6^{3}}$.
b. Explain how this helps show why $6^{0}=1$.

## Lesson 2: Square Roots and Cube Roots

- Let's think about square and cube roots.


## 2.1: It's a Square

Find the area of square $A B C D$.


## 2.2: Squares and Their Side Lengths

1. Complete the table with the area of each square in square units, and its exact side length in units.


| figure |
| :---: |
| area |
| side length |


| A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |

2. This table includes areas in square units and side lengths in units of some more squares. Complete the table.

| area | 9 |  | 23 |  | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| side length |  | 4 |  | 6.4 |  |

## Are you ready for more?

In the first question, all of the squares have vertices at grid points.

1. Is there a square whose vertices are at grid points and whose area is 7 square units?

Explain how you know.
2. Is there a square whose vertices are at grid points and whose area is 10 square units? Explain how you know.

## 2.3: Cube It



1. A cube has edge length 3 units. What is the volume of the cube?
2. A cube has edge length 4 units. What is the volume of the cube?
3. A cube has volume 8 units. What is the edge length of the cube?
4. A cube has volume 7 units. What is the edge length of the cube?
5. $\sqrt[3]{1,200}$ is between 10 and 11 because $10^{3}=1,000$ and $11^{3}=1,331$. Determine the whole numbers that each of these cube roots lies between:

$$
\sqrt[3]{5} \quad \sqrt[3]{10} \quad \sqrt[3]{50} \quad \sqrt[3]{100} \quad \sqrt[3]{500}
$$

| between | 1 and <br> 2 | 2 and <br> 3 | 3 and <br> 4 | 4 and <br> 5 | 5 and <br> 6 | 6 and <br> 7 | 7 and <br> 8 | 8 and <br> 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Lesson 2 Summary

If a square has side length $s$, then the area is $s^{2}$. If a square has area $A$, then the side length is $\sqrt{A}$. For a positive number $b$, the square root of $b$ is defined as the positive number that squares to make $b$, and it is written as $\sqrt{b}$. In other words, $(\sqrt{b})^{2}=b$. We can also think of $\sqrt{b}$ as a solution to the equation $x^{2}=b$. This square has an area of $b$ because its sides have length $\sqrt{b}$ :


Similarly, if a cube has edge length $s$, then the volume is $s^{3}$. If a cube has volume $V$, then the edge length is $\sqrt[3]{V}$. The number $\sqrt[3]{a}$ is defined as the number that cubes to make $a$. In other words, $(\sqrt[3]{a})^{3}=a$. We can also think of $\sqrt[3]{a}$ as a solution to the equation $x^{3}=a$. This cube has a volume of $a$ because its sides have length $\sqrt[3]{a}$ :


## Lesson 2 Practice Problems

1. Rewrite the following expression as a number with no exponents. Explain or show your reasoning.

$$
\frac{7^{-3}}{7^{-5}}
$$

(From Unit 3, Lesson 1.)
2. Find the value of each variable that makes the equation true.
a. $\left(2^{d}\right)^{4}=2^{12}$
b. $3^{5} \cdot 7^{5}=e^{5}$
c. $5^{0} \cdot 5^{f}=5^{4}$
(From Unit 3, Lesson 1.)
3. A square has area $9 \mathrm{~cm}^{2}$. How long are its sides?
A. 3 cm
B. 4.5 cm
C. 9 cm
D. 81 cm
4. The table shows the side length and area of several different squares. Complete the table using exact values.

| side length (cm) | 5 |  | $\sqrt{63}$ |  |  | $\sqrt{125}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| area (cm²) |  | 49 |  | 98 | 102 |  |

5. Find the two whole numbers that are the closest to $\sqrt{42}$. Explain your reasoning.
