\qquad

Problem Card 1

There are two complex numbers and $(\mathrm{a}+\mathrm{bi})$ and $(\mathrm{c}+\mathrm{di})$ whose product is an imaginary number. What are the two complex numbers?

Data Card 1

- The product of the two numbers is 34 i .
- The real part of $(a+b i)$ is 4 .
- The imaginary part of $(a+b i)$ is -i .

Problem Card 2

There are two complex numbers and $(\mathrm{a}+\mathrm{bi})$ and $(\mathrm{c}+\mathrm{di})$ whose product is a real number. What are the two complex numbers?

Data Card 2

- The product of the two numbers is 12 .
-The real part of $(a+b i)$ is 2 .
- The imaginary part of $(\mathrm{c}+\mathrm{di})$ is 3 i .
\qquad

Problem Card 3

There are two complex numbers and $(\mathrm{a}+\mathrm{bi})$ and $(\mathrm{c}+\mathrm{di})$ whose sum is a complex number with both real and imaginary parts. What the two complex numbers?

Data Card 3

- The sum of the two numbers is $-2+5 \mathrm{i}$.
- The real part of $(a+b i)$ is 4 .
- The imaginary part of $(\mathrm{c}+\mathrm{di})$ is -5 i .

Problem Card 4

There are two complex numbers and $(\mathrm{a}+\mathrm{bi})$ and $(\mathrm{c}+\mathrm{di})$ whose difference is a complex number with both real and imaginary parts. What the two complex numbers?

Data Card 4

- The sum of the two numbers is 7 - i .
- The real part of $(a+b i)$ is -6 .
- The imaginary part of $(c+d i)$ is $9 i$.

