Complex Numbers and Rational Exponents: End-of-Unit Assessment

Do not use a calculator.

1. Select all expressions that are equivalent to $64^{\frac{2}{3}}$.
A. $(\sqrt{64})^{3}$
B. $(\sqrt[3]{64})^{2}$
C. 4^{2}
D. $\sqrt[3]{64^{2}}$
E. $\sqrt[3]{128}$
2. How many real solutions does $x^{2}+8 x+20=0$ have?
A. 0
B. 1
C. 2
3. Select all the solutions to $(x-2)^{2}=-16$.
A. $x=6$
B. $x=-2$
C. $x=-6$
D. $x=2+4 i$
E. $x=2+2 i$
F. $x=2-2 i$
G. $x=2-4 i$
4. Let $p=5-2 i$ and $q=-3+7 i$. Write each expression in the form $a+b i$:
a. $p+q$
b. $p-q$
C. $p q$
5. a. Show how to solve the equation $\sqrt{2 x+1}-4=-1$.
b. Explain why $\sqrt{2 x+1}+4=-1$ has no real solution.
6. a. Here is a graph of $g(x)=\sqrt[3]{x}$.

Use the graph of $g(x)=\sqrt[3]{x}$ to help you explain why there is only one x-intercept for every cube root function of the form $y=\sqrt[3]{x+a}$, in which a is a real number.
b. Use the meaning of cube roots to show how to find an exact solution to the equation $\sqrt[3]{x+2}=-2$ without using a graph.
c. Use the meaning of cube roots to show how to find an exact solution to the equation $\sqrt[3]{x}+2=-2$ without using a graph.
7. Noah and Lin are each trying to solve the equation $x^{2}-6 x+10=0$. They know that the solutions to $x^{2}=-1$ are i and $-i$, but they are not sure how to use this information to solve for x in their equation.
a. Here is Noah's work:

$$
\begin{aligned}
x^{2}-6 x+10 & =0 \\
x^{2}-6 x & =-10 \\
x^{2}-6 x+9 & =-10+9 \\
(x-3)^{2} & =-1
\end{aligned}
$$

Show how Noah can finish his work using complex numbers.
b. Lin decides to solve the equation using the quadratic formula. Here is her work:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(10)}}{2(1)} \\
& x=\frac{6 \pm \sqrt{36-40}}{2}
\end{aligned}
$$

Lin knows $36-40$ is a negative number and isn't sure what to do next. Show how Lin can write her solution using i.

