Name
\qquad
\qquad

Solve each related rate problem. The answers are provided. Please show the proper AP set-up of the problems and the neccessary calculations to arrive at your answers. Choose 3 problems!

1) A hypothetical square shrinks so that the length of its diagonals are changing at a rate of $-6 \mathrm{~m} / \mathrm{min}$. At what rate is the area of the square changing when the diagonals are 3 m each?
2) A spherical snowball is rolled in fresh snow, causing it to grow so that its radius increases at a rate of $2 \mathrm{in} / \mathrm{sec}$. How fast is the volume of the snowball increasing when the radius is 7 in?
3) A crowd gathers around a movie star, forming a circle. The radius of the crowd increases at a rate of $5 \mathrm{ft} / \mathrm{sec}$. How fast is the area taken up by the crowd increasing when the radius is 7 ft ?
4) A conical paper cup is 20 cm tall with a radius of 10 cm . The cup is being filled with water so that the water level rises at a rate of $2 \mathrm{~cm} / \mathrm{sec}$. At what rate is water being poured into the cup when the water level is 3 cm ?
5) Water slowly evaporates from a circular shaped puddle. The radius of the puddle decreases at a rate of $7 \mathrm{in} / \mathrm{hr}$. Assuming the puddle retains its circular shape, at what rate is the area of the puddle changing when the radius is 4 in ?

Answers to Ch2 Hwk\#5 - Related Rates with Answers (ID: 1)

1) $-18 \mathrm{~m}^{2} / \mathrm{min}$
2) $392 \pi \mathrm{in}^{3} / \mathrm{sec}$
3) $70 \pi \mathrm{ft}^{2} / \mathrm{sec}$
4) $\frac{9 \pi}{2} \mathrm{~cm}^{3} / \mathrm{sec}$
5) $-56 \pi \mathrm{in}^{2} / \mathrm{hr}$
