Objective 2.5a

63. Which function is best represented by the data in this table?

Х	0	1	2	3	4
Υ	1	З	9	27	81

A $f(x) = x^{3}$ B $f(x) = 3^{x}$ C f(x) = 3xD $f(x) = 3x^{2}$

64. What are the horizontal asymptote and y-intercept for the graph of this function $f(x) = 2^{-x} + 7$?

A Asymptote: y=7, Intercept: (0, 7) B Asymptote: y=-7, Intercept: (0, 7) C Asymptote: y=7, Intercept: (0, 8) D Asymptote: y=-7, Intercept: (0, 8)

65. Which function is best represented by this graph?

66. Which function is best represented by this graph?

67. Which graph represents the function $f(x) = \log(x+3)$?

objective 2.5b 68. Which function is the inverse of $f(x) = \log x$?

> A $f(x) = e^x$ $\mathsf{B} f(x) = 2^x$ C $f(x) = 10^{x}$ $\mathsf{D} \ f(x) = \frac{1}{\log x}$

69. If $3^{\log_3 7} = x$, what is the value of x? **A** 7 **B** 3⁷ C ∛7

- D ∛3

70. Which equation represents the solution for x in the formula $6^x = 21$?

A
$$x = \frac{\log 6}{\log 21}$$

B $x = \frac{\log 21}{\log 6}$
C $x = \log 21 - \log 6$
D $x = \log 21 + \log 6$

71. What is the value of $\log \sqrt{10}$?

- A 0 B ½
- C 1 D 10
- D 10

72. If $\log_{2x} 80 = 2$, what is the value of x?

- A 20 B $2\sqrt{5}$
- C $5\sqrt{2}$
- D $2\sqrt{10}$

73. If
$$4\left(Log_{3}\frac{1}{27}\right) = x$$
, what is the value of x?
A $\frac{4}{3}$
B $\frac{-4}{3}$
C 12
D -12

Objective: 2.5c

74. If the loudness of fizz in a can of soda pop is represented

by $F = 4 \log \left(\frac{x}{10^{-5}} \right)$, where x is represented by the intensity of sound, how loud is the fizz if $x = 10^{-3}$?

A 4 decibels B 8 decibels C 16 decibels D 32 decibels

- 75. The formula, $r = 2^{\frac{1}{x}} 1$, gives the annual interest rate, r, required for your money to double in x years. If it takes 18 years for your money to double, what was the approximate annual interest rate? A 2%
 - B 4%
 - C 8%
 - D 18%
- 76. The population, *P*, of prairie dogs increases according to the equation $P = 2,250e^{rt}$, where *t* is the number of years, and *r* is the rate of growth. Which equation solves for *r*?

A
$$r = \frac{\ln\left(\frac{P}{2,250}\right)}{t}$$

B $r = \frac{t}{\ln\left(\frac{P}{2,250}\right)}$
C $r = \frac{\ln\left(\frac{2,250}{P}\right)}{t}$
D $r = \frac{t}{\ln\left(\frac{2,250}{P}\right)}$

- 77. The mass of a radioactive sample is given by $M(t) = M_0 10^{-kt}$, where *t* is the time in years, M_0 is the initial mass, and *k* is a constant. If 400 grams of this material decays to 40 grams in 10 years, what is the value of *k*?
 - A 1 B -1 C 0.1 D -0.1

Objective 2.6a

78. Which equation has -1 and 3 as solutions?

A $x^{2}-2x-3=0$ B $x^{2}-2x+3=0$ C $x^{2}+2x-3=0$ D $x^{2}+2x+3=0$