SECTION 1: Polynomial Functions in Standard and Factored Form

- 1. Write the polynomial in standard form: $f(x) = f(x) = -2x^4 x^6 4 + 5x$
- 2. Find the degree, leading coefficient, and constant of each function:

	Function	Degree	Leading Coefficient	Constant
А	$f(x) = -2x^3 - x^2 + 5x - 1$			
В	g(x) = 3(x+2)(x-4)			None
С	$f(x) = -x^2 + 5x + 3$			
D	$f(x) = 3x^5 - x^{10}$			

3. Evaluate the polynomial function at x = -2 using direct AND synthetic substitution . $f(x)=3x^5-x^3+6x^2-x+1$

4. What does your answer to #3 mean? What would it mean if the answer to #3 was 0?

SECTION 2: Polynomial Operations

Complete the polynomial operation.

6.	$(3x^2 + x) + (2x + 5) + (6x - 1)$	7.	$(2x^2 + 4x - 1) - (x^2 - 3x + 5)$
8.	$(2x + 3)^2$	9.	$(x - 4)^3$
10.	(x + 5i)(x - 5i)	11.	$(x + \sqrt{7})(x - \sqrt{7})$

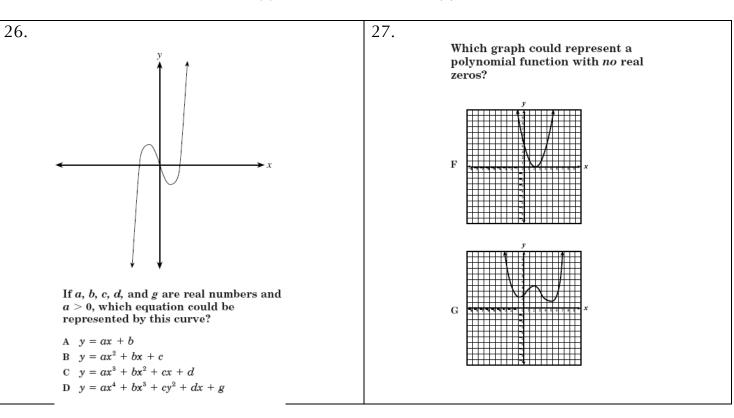
Factor.

12.	$x^3 + 64 =$	13.	$x^2 + 64 =$
14.	$x^3 - 64 =$	15.	$x^2 - 64 =$
16.	$125x^3 - 1$	17.	$50x^2 - 8$
18.	$x^2 + 3x - 10$	19.	$6x^2 - 19x - 7$

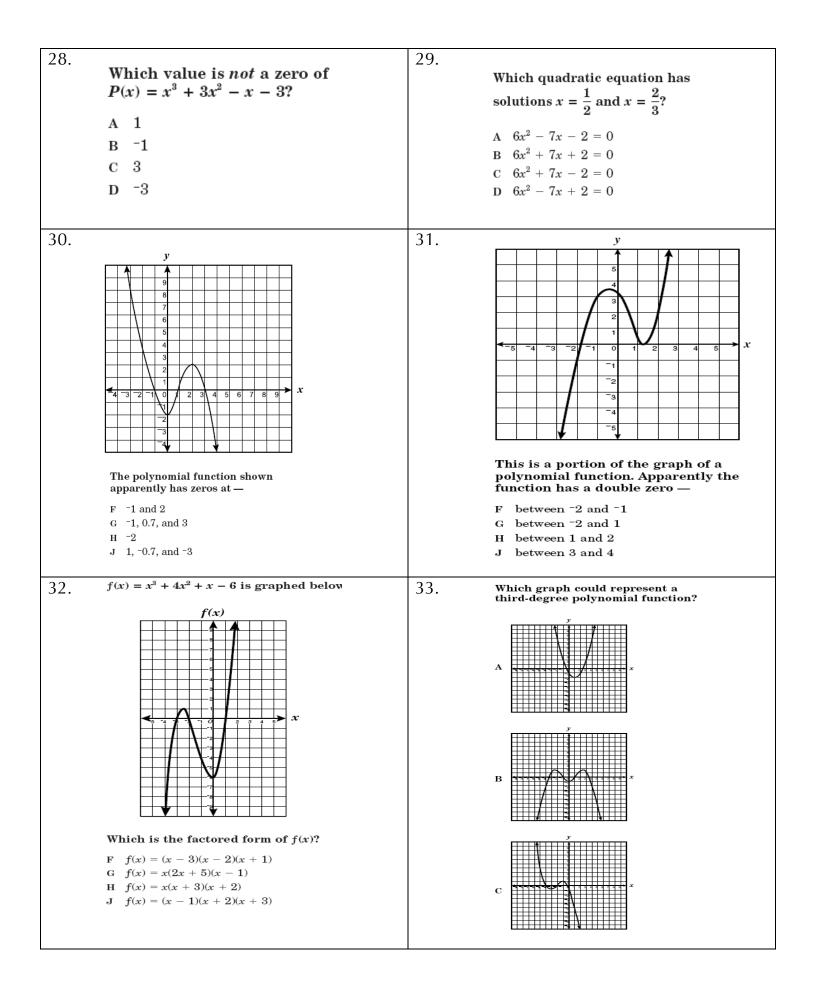
SECTION 3: End Behavior

20. Draw a sketch of the end behavior of: $h(x) = -2x^3 - 11x^3 + 9x^2 - 7x - 5$

21. Find the end behavior of: $k(x) = 5x^4 - x^3 + 3x^2 - 2x^2 - 5$ As As


As	$x \rightarrow +\infty$	then	$f(x) \rightarrow$	
As	$x \rightarrow -\infty$	then	$f(x) \rightarrow $	

22.	Question	Answer A	Answer B
A	Describe the end behavior of the polynomial function whose graph is shown.	As $x \rightarrow -\infty$, $f(x) \rightarrow -\infty$ As $x \rightarrow +\infty$, $f(x) \rightarrow -\infty$	As $x \rightarrow -\infty$, $f(x) \rightarrow +\infty$ As $x \rightarrow +\infty$, $f(x) \rightarrow +\infty$
В	Describe the end behavior of the polynomial function whose graph is shown.	As $x \rightarrow -\infty$, $f(x) \rightarrow -\infty$ As $x \rightarrow +\infty$, $f(x) \rightarrow +\infty$	As $x \rightarrow -\infty$, $f(x) \rightarrow +\infty$ As $x \rightarrow +\infty$, $f(x) \rightarrow -\infty$
С	Which polynomial graph is being described? As $x \rightarrow -\infty$, $f(x) \rightarrow -\infty$. As $x \rightarrow +\infty$, $f(x) \rightarrow -\infty$.		
D	Which polynomial graph is being described? As $x \rightarrow -\infty$, $f(x) \rightarrow +\infty$. As $x \rightarrow +\infty$, $f(x) \rightarrow -\infty$.		
E	odd degree and positive leading coefficient	As $x \rightarrow +\infty$, $f(x) \rightarrow +\infty$	As $x \rightarrow +\infty$, $f(x) \rightarrow -\infty$
F	even degree and negative leading coefficient	As $x \rightarrow +\infty$, $f(x) \rightarrow +\infty$	As $x \rightarrow +\infty$, $f(x) \rightarrow -\infty$
G	$f(x) = -2x^5 + 3x^4 - 4x^3 + 5x^2 - 6x + 7$	As $x \rightarrow -\infty$, $f(x) \rightarrow -\infty$	As $x \rightarrow -\infty$, $f(x) \rightarrow +\infty$
Н	$g(x) = 13x^4 - 11x^3 + 9x^2 - 7x^2 - 5$	As $x \rightarrow -\infty$, $f(x) \rightarrow -\infty$	As $x \rightarrow -\infty$, $f(x) \rightarrow +\infty$


SECTION 4: Zeros

23.	Given the z	zero, find the factor.	24.	Given the factor, find the zero.
	5			x – 3
	$-\frac{3}{4}$			2x + 1
	2i			5x – 10
	$\sqrt{5}$			x - \sqrt{5}

25. Create a polynomial function **IN STANDARD FORM** with a leading coefficient of 2 and zeros at 0, 1, and 3.

A zero of f(x) is a number k such that f(k) = 0.

34.	Which is a zero of the function $f(x) = x^2 + 6x + 8?$ F -8 G -4 H 2 J 4	35. Which of the following functions has x-intercepts at -2 and 1? A $y = x^2 - x - 2$ B $y = x^2 + x - 2$ C $y = x^2 - 2x + 1$ D $y = 2x - 1$
36.	The polynomial function $y = x^3 - 3x^2 + x + 1$ has a zero between — F ⁻⁴ and ⁻³ G ⁻² and ⁻¹ H ⁻¹ and 0 J 3 and 4	37. What is the zero of the function f(x) = 12x + 27? F 27 G $\frac{9}{4}$ H 0 J $\frac{-9}{4}$
38.	y y <td< td=""><td>39. y y y A section of the graph of a polynomial function with integral coefficients is shown. Which of the following sets most likely contains only elements that are factors of the polynomial? A $\{(x - 2), (x - 1, 5)\}$ B $\{(x - 2), (x - 1), (x + 1)\}$ D $\{x, (x - 2), (x - 1), (x + 1)\}$</td></td<>	39. y y y A section of the graph of a polynomial function with integral coefficients is shown. Which of the following sets most likely contains only elements that are factors of the polynomial? A $\{(x - 2), (x - 1, 5)\}$ B $\{(x - 2), (x - 1), (x + 1)\}$ D $\{x, (x - 2), (x - 1), (x + 1)\}$

40.	41.
Which function of x would have	Which is a zero of the function
x-intercepts $-\frac{1}{2}$ and 3?	$f(x) = x^2 - 2x - 24?$
2	F ⁻ 6
F $y = 2x^2 - 5x - 3$ G $y = x^2 - x - 6$	G -3
H $y = 2x^2 + 5x - 3$	н 4
$\mathbf{J} \mathbf{y} = 2x^2 + 7x + 3$	Ј 6
42.	43.
Which of the following is a zero of the function	A polynomial function has a zero at x = -4. Which expression <i>must</i> be a factor of the polynomial?
$f(x) = x^3 - x^2 - 14x + 24?$	
F ⁻ 4	$\begin{array}{ccc} \mathbf{F} & x-4\\ \mathbf{G} & x-2 \end{array}$
G [−] 3	$\begin{array}{c} \mathbf{G} x-2 \\ \mathbf{H} x+2 \end{array}$
н -2	J x + 4
J 0	
44.	45.
Which apparently is a graph of a	Which could be a graph of $y = ax^3 + bx^2 + cx + d$ if a, b, c, ar are real numbers and $a < 0$?
quadratic function that has no real zeros?	y ↑
2	F \leftarrow x
	¥ .y
F	$\uparrow \uparrow \uparrow$
	$G \checkmark x$
	\downarrow
	y ↑
y	
	۶ ↑
	*

Use SYNTHETIC DIVISION to DIVIDE the polynomials. Be sure to write your answer in the form of a polynomial and a remainder.

46.	$(x^3 - 3x^2 + 8x - 5) \div (x - 1)$	47.	$(x^4 - 7x^2 + 9x - 10) \div (x - 2)$
48.	$(2x^4 - x^3 + 4) \div (x + 1)$	49.	$(2x^4 - 11x^3 + 15x^2 + 6x - 18) \div (x - 3)$

Factor the following polynomials completely (given a factor).

50.	$f(x) = x^3 - 3x^2 - 16x - 12;$	(x - 6)	51.	$f(x) = x^3 - 12x^2 + 12x + 80;$	(<i>x</i> – 10)
52.	$f(x) = x^3 - 18x^2 + 95x - 126;$	(y 0)	F.2	$f(x) = x^3 - x^2 - 21x + 45;$	(x + 5)
52.	I(x) = x - 10x + 95x - 120,	(x - 9)	55.	I(x) = x - x - 21x + 43,	(x + 3)

Factor the following polynomials completely (given a zero).

	or the following polynomials completely (gi		
54.	$f(x) = x^3 + 2x^2 - 20x + 24; \qquad -6$	55.	$f(x) = 15x^3 - 119x^2 - 10x + 16; \qquad 8$
56.	Find all the zeros and sketch its graph.	57.	Find all the zeros and sketch its graph.
	$f(x) = 2x^3 + 3x^2 - 39x - 20;$ 4 is a zero		One zero of $f(x) = x^4 + 3x^2 - 4$ is 1.
	I(A) = 2A + 3A = 33A = 20, 4 is a ZeIO		$C_{10} = C_{10} O_{11(A)} = A + JA = T + J5 + 1.$
	T		T
←	→	←	→
	\perp		
	\checkmark		▼
L		1	

58.	List all the possible zeros of $g(x) = x^3 - 2x^2 - 21x - 18$. Then find all the zeros for
	the polynomial function. Show the synthetic division and other work for full credit.
	Zeros:
59.	List all the possible zeros of $f(x) = x^3 + 2x^2 + 5x + 10$. Then find all the zeros for
	the polynomial function. Show the synthetic division and other work for full credit.
	The polynomial function. Chow the symmetric attraction and other work for function.
	Zeros:
60.	List all the possible zeros of $f(x) = 4x^3 - 12x^2 - x + 15$. Then find all the zeros for
	the polynomial function. Show the synthetic division and other work for full credit.
	The polynomial function. Chow the symmetric attraction and other work for function.
	Zeros:
1	

Sketch the polynomial functions							
61. $f(x) = x (x + $	$(x-7)^4$	Σ.					
Degree:	Leading Coefficient:						
Number of turning	g points:	$\begin{array}{c} \cdot \ + \ + \ + \ + \ + \ + \ + \ + \ + \$					
End behavior:	$\begin{array}{ccc} x \to \infty, & f(x) \to \underline{\qquad} \\ x \to -\infty, & f(x) \to \underline{\qquad} \end{array}$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$					
Zeros and multiplicity:		$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$					
		F + + + + + + + + + + + + + + + + + + +					
62. $f(x) = -4 (x - 4)$	(x-3)(x+8)						
Degree:	Leading Coefficient:	+ + + + + + + + + + + + + + + + + + +					
Number of turning	; points:	-++++++++++++++++++++++++++++++++++++					
End behavior:	$x \to \infty, f(x) \to __\$ $x \to -\infty, f(x) \to __\$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$					
Zeros and multipli	city:	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$					
		, , , , , , , , , , , , , , , , , , ,					

63.																			
	Domain:	 	_																
	Range:			Ċ	:	*				*	ł		:1		*	:	1	:	1
	0			÷	+	+					Ŧ	+		+	+	+	+		
	Increasing:	 		,	*	*	• •			*	t.	*	·	*	*	*	*	*	*
									ſ	1.	1		1						
	Decreasing:	 		÷	+	*			ŀ	ŀ	Ł	*	Ł	+	+	*	*	*	*
	Absolute Max:	 			:	-6			3	1	Ŧ		I	3		:	6	:	
	Absolute Min:			ķ	*	*		1		1	ł		ſ.	*	*	*			
	Absolute Mill.	 		•	*	*	• •			+	ł	٠l	*	+	+	*	*	*	*
	Relative Max:	 		,	*						A	J	•	•	*	*			
	Relative Min:	 		ŀ	*	*	* *	¥	• •	+	t	*	*	*	+	*	*	*	*

SECTION 5: FUNCTION OPERATIONS AND COMPOSITON

- 1. f(x) = 3x 5 g(x) = 2x + 1
 - a) f(x) + g(x) b) f(x) + g(x) c) f(x) g(x)

f(x) = 3x - 5 $g(x) = 2x + 1$	5. $f(x) = 3x - 5$ $g(x) = 2x + 1$	6. $f(x) = x - 2$ $g(x) = x^2 + 3$
	Find fog.	Find g o f.
7. $f(x) = 5x - 6$ $g(x) = 3x$	8. $f(x) = 2x^2 + 11$ $g(x) = 4x$	9. $f(x) = x^2 - 9$ $g(x) = 3x^2$
Find f(g(x)).	Find g(f(x)).	Find $f \circ g(x) \circ OR f(g(x))$.
10. $f(x) = 5x^2$ $g(x) = 6x - 2$	11. $f(x) = -4x + 6$ $g(x) = 5x - 1$	12. $f(x) = 2x^2$ $g(x) = x^2 + 7$
Find f o f (x). Also find g o g (x).	Find f o g (2) OR $f(g(2))$.	Find $f(g(-1))$. Also find $g(f(-2))$.