

Feb 15-10:49 AM

Feb 15-10:51 AM

Feb 15-10:52 AM

Feb 15-10:50 AM

Feb 15-10:51 AM

Feb 15-10:52 AM

Feb 15-10:52 AM

Feb 15-10:53 AM

Feb 15-10:54 AM

Feb 15-10:53 AM

Feb 15-10:53 AM

Give the transformations that 1. $f(x) = 2^{x+2} - 5$	have taken place from the parent function of $f(\mathbf{x}) = 2^{\mathbf{x}}$. 2. $f(\mathbf{x}) = 2^{\mathbf{x}-\mathbf{x}}$ 3. $f(\mathbf{x}) = -2^{\mathbf{x}} - 1$
y = 2***	Transformations
y = -3 ^{sol} - 2	Transformations State 3 points on Graph Domain Range Asymptote Interval X.intercept Interval X.intercept Vision (1)

Feb 15-10:56 AM

Feb 15-10:56 AM

Feb 15-10:57 AM

Feb 15-10:58 AM

Feb 15-10:56 AM

Feb 15-10:57 AM

Feb 15-10:59 AM

Feb 15-10:59 AM

Feb 15-11:01 AM

Feb 15-11:04 AM

Feb 15-11:00 AM

Jeometric Rect	ırsive Formul	a: Geom	etric Explicit Formula:
	Common ratio	Recursive Formula	Explicit Formula
1, 2, 4, 8, 16,			
$10, -2, \frac{2}{5}, -\frac{2}{25}, \dots$			
5, 15, 45, 135,			
320, 80, 20, 5,			
Find the first five term $g_n = -1(3)^{n-1}$	ns of the geometric se	quence defined as follows:	
f. Find the first five te $g_{\pi} = g_{\pi^{-1}} \cdot \frac{1}{4}, g_1$		sequence defined as follows	:
A colony of ants start		colony triples every year. resent the sequence.	
b. How man	y members will the co	ony have after 3 years?	
c. How many	y years will it take for	the colony to reach greater than	1,000 ants?
Find the common rati	o and the missing terr	n in the sequence	

Feb 15-11:02 AM

Algebra I	
Geometric Sequence Practice	DatePeriod
State if each sequence is geometric.	2) 2122640
1) -4, 8, -10, 32,	2) 2, -12, -20, -40,
3) 11, 17, 23, 29,	4) 4, 12, 36, 108,
5) -10, -5, 0, 5,	6) -2, -12, -72, -432,
7) 1, 6, 36, 216,	8) 9, 99, 999, 9999,
Find the common ratio.	10) ~3, 9, ~27, 81,
11) 2, 8, 32, 128,	12) 4, 12, 36, 108,

Feb 15-11:04 AM

Feb 15-11:04 AM

Feb 15-11:05 AM

Feb 15-11:09 AM

Feb 15-11:04 AM

Feb 15-11:05 AM

FOTD ~ Geometric Sequences	Name
Create your own geometric sequence. The first term lecaying	n in your sequence is 24330 and your sequence is
24330,,	
u =	
Write the recursive formula for YOUR sequence.	
write the recursive formula for 100x sequence.	write the explicit formula for 1000 sequence.
Find the 8^{th} term in your sequence using the explicit representation of the sequences of the sequences	formula. Name
Create your own geometric sequence. The first term	in your sequence is 3 and your sequence is growing.
3,	
n =, r =	
Write the recursive formula for YOUR sequence.	Write the explicit formula for YOUR sequence.
Find the 8^{th} term in your sequence using the explicit	formula.

Feb 15-11:10 AM

Feb 15-11:10 AM

Feb 15-11:10 AM

Feb 15-11:10 AM

y		32 e func	16 tion e	8 xpone	ential gro	wth or	expon	ential	decay	?						
ь	Writ	e the e	quat	ion of	the funct	ion.										
					00 and it in tyear		iated :	in valu	ie %10) per y	sar. V	Vrite	an e	•qua	tion	to
					-1 + 4, esent gro	with or	decay	n								
					f the asyı											
					ations th											
2) Giver																
					esent gro							-				
					f the asyr			_	-							
c)	Descr	ibe th	e tran	storn	ations th	sat occu	ır:									

Feb 15-11:10 AM